Existing and New Algorithmsfor Non-negative M atrix
Factorization

By Wenguo Liu & Janliang Yi

[Abstract]

Three non- negative matrix factorization agorithms proposed by Lee & Seung [*! and
Paatero (2, and the implementation of these algorithms are discussed in this report. The
advantages and disadvantages of these three algorithms are compared based on initial
matrix selection, convergent speed, result quality, and easiness to implement.

A new nonnegative matrix factorization algorithm using rank-deficient QR
decomposition is presented in this report. Computation samples manifest the efficiency of
this new algorithm. The comparison of this new algorithm with the other three algorithms
isaso given in the report.

O. Introduction

Non-negative matrix factorization (NMF) X: given a non negative m” n matrix X,
find non- negative matrix factorsG (m" p)and F (p" n) such that X » GF, wherep is a

smaller number compared to m and n. The reasonable value of p depends on the property
of theinput matrix X. For some matrices, if p istoo smal, no reasonable solution exigts.

Nortnegative matrix factorization is a very important matrix factorization in Linear
Algebra. It is widely used in environmental science, spectroscopy and chemometrics 12>
6 7 where the matrix elements have clear physical meanings.

Two easy to implement algorithms are presented in [1]. These two algorithms are
based on two different multiplicative update rules. Convergence proofs are also provided
in the paper [, and at least locally optimal solutions are guaranteed to be found.

Positive Matrix Factorization (PMF) agorithm ' 71 was first proposed by Dr.
Paatero. It is time-efficient compared with commonly used Alternative Least Squares
agorithm (ALS) ' though with some similarities. PMF can be considered as a
generdization of the ALS adgorithm [,

In this paper, NMF agorithms Y and PMF algorithm '@ are implemented in
MATLAB. Their basic implementation details are illustrated in the discussion. The
comparisons are carried out based on the convergent rate, initial matrix selection, result

quality, and easiness to implement. Also, a new PMF algorithm using rank-deficient QR
decomposition with column pivoting is discussed and implemented.

1. Non-negative Matrix Factorization with Multiplicative Update!
(1) Cost Function of NMF Algorithms

Since the non negative factorization is an approximation factorization X » GF, we
need to define the cost function to qudify this gpproximation.

One natural way is to use the Euclidean distance between two matrices to evaluate
the approximation. Assume matrix A and B, the Euclidean distance between them is
defined as.

[A- B =& A, -B,)". (1-1)
%
It's lower bounded by 0 and equalsto 0 if and only if A = B [,

Another useful cost function isthe divergence of A and B. It'sdefined as.
A,
D(AIB)=a (A log g™~ A; +B;). (1-2
1,] ij

ij
We call it “divergence” instead of “distance” because it's not symmetric between A and
B. It'saso lower bounded by 0 and equalsto O if and only if A =B 1,

(2) NMF Algorithm 1 by Lee & Seung (Euclidean Update) "¥: Minimize | X - GF |*

with respect to G and F, subject to the congraints G, F3 0.
1. Initidize G and F to be two random non-negative matrices,

2. Keepupdating G and F until | X - GF |° converges. The multiplicative update
rules are as the following:

T T
am:Fam(G:rA’ Gia: iaM' (1'3)
(G GF) (G FF)i,

During the above updates, we should update G and F “simultaneously”. We
shouldn’t update the whole matrix F first followed by updating the matrix G. Instead,
after updating one row of F, we need to update the corresponding column of G. So
actually we update F and G aternatively. When update arow of F or acolumn of G, we
don’t need to calculate out the whole matrices G™X, G'GF, XF' and G'FF' as suggested
by the appearance of the rules, since we only need one row (or column) of these matrices
during one update.

(3) Computation Sample of Euclidean Update

Computation samples verify that our implementation is successful. For example, for a
meatrix

61 2 30
é a
_et 5 6y
&7 8 9u
80 11 12§

the output of our program when running a atolerance of 1.0e-3 (Initid vdueG = 0.5*
ones(4, 2); F=0.5* oney(2, 3);) isgiven below:

Converge at 126 step, tolerance = 0.001000, euc_val = 0.000976
G=
0.1475 15118
0.6416 1.1179
1.1391 0.6933
1.6271 0.3548
F =
6.1231 6.6129 7.1000
0.0644 0.6761 1.2929
X-G*F=
-0.0003 0.0026 -0.0017
-0.0007 0.0012 -0.0009
-0.0194 -0.0014 0.0161
0.0139 -0.0001 -0.0116

(4) NMF Algorithm 2 by Lee & Seung (Divergence Update) [Y: Minimize D (X || GF)
with repect to G and F, subject to the congtraints G, F3 0.
1. Initidize G and F to be two random non-negative matrices,
2. Keep updating G and F until D (X || GF) converges. The multiplicative update
rules are as the following:

o o]

G X / GF ; I:amxim/(G'F)im
Fam — Fam al Ig m ()Im , Gla - Gla a m > . (1_4)
akaa aVFav

During the above updates, we should update G and F “simultaneously”. We
shouldn’t update the whole matrix F first followed by updating the matrix G. Instead,
after updating one row of F, we need to update the corresponding column of G. So
actually we update F and G dternatively.

(5) Computation Sample of Divergence Update

Computation samples verify that our implementation is successful. For example, for a
matrix
él 2 3u
é a
_ é4 5 6 Q
é7 8 9d
Q0 11 12§

the output of our program when running at atolerance of 1.0e-3 (Initid vdueG = 0.5*
ones(4, 2); F=0.5* oney(2, 3);) isgiven below:

Converge at 80 step, tolerance = 0.001000, div_val = 0.000965
G=
0.1588 1.2308
0.6708 0.9005
1.1861 0.5435
1.6867 0.3038
F =
59011 6.3785 6.8525
0.0509 0.8006 1.5546
X-G*F=
0.0000 0.0015 -0.0018
-0.0044 0.0003 0.0034
-0.0270 -0.0008 0.0273
0.0315 -0.0016 -0.0300

2. The Iterative Positive Matrix Factorization (PMF) Algorithm [2
(1) Basic Equation

The basc equations for thisagorithm are:
(G +g)(F+f) =X, (2-1
R =X - GF istheresidua of factorization, f is a matrix with the same size as F matrix,
and g is matrix with the same size as G matrix. We need to compute the unknowns g and
f a each computation step, and then we can move on to the next step with updated
matrices G = G+ gand F = F + f. Initia values of G and F matrices are provided,
currently we tried different initial matrices such as ones and random matrices.

For the above nonlinear equation, NewtonRaphson method is a good choice,
provided we are lucky enough that we do not encounter non-positive-definite matrix 2.
Basically, we cannot ensure that non-positive-definite matrix will not occur, although the
probability is small, therefore, using Newton_Raphson method to solve this nonlinear
equation system will sometimes fail. Our current MATLAB code actually implemented
using the second alternative (Named Gauss-Newton procedure), which is explained in the
following text.

Equation (2-1) can be simplified by omitting the 2" order term gf 2, which resultsin
alinear equation system
Gf +Fg =R. (2-2)
If matrix X ismby n, Gismby p,and Fis p by n, reiterating the above equation
resultsin alinear equation system with (m+n) p unknownsin f and g,

P 8
a Gihfhj +a gthhj = Rij' (2'3)
h=1 h=1

where G, represents the " row, H" column element of matrix G. The above linear

equation system can be written in matrix form,
ADx = vect(R) (2-9)

where Dx=f, f, .. for O O - gmpJT, matrix A consists of many zeros
and the remaining part are elements of G and F matrices, and vect(R) is a vector for the

matrix R expressed in vector form with row dominant order. For example, if

ér, rI,u
R - éll 12& (2_5)
& Il
then
ér,u
& u
vect(R) = €U (2-6)
=217
e u
erzzu

To check whether the agorithm has got convergent results, the error function is
evaluated at each step 2,

Q(G,F) = a a (R, /6,y (2-7)

where 0 isthe standard deviation matrix of the input matrix X.

The standard deviation matrix 0 is related to the physical meaning of the problem,
and makes our current method a weighted least squares problem (Define weights
w, =1/si1.2). In practice, you may put less weight on some part of the data in the X

matrix if you know in advance that the data might have some erors because of
experimenta errors or other reasons. Currently in our code it is evaluated to be all-one
matrix (equa weights for all elementsof X) simply because we are only concerned with
the dgorithm itsdf, not its physical meaning at thistime.

If the above function Q gets a small quantity below our prefixed error tolerance, then
this adgorithm has converged.

(2) Regularization Procedure

Several factors determine that we cannot have a unique solution to the above equation
sysem.

(a) Rotation
If we have a positive matrix factorization of the form X =GF(X 3 0,G3 O,F 3 0)

(where G 3 0 means every element of matrix G is greater than or equal to 0), then if
we can find a square matrix T, sit.,

X =GTT'F,

GT3 0, T'F30.
Then we have found another solution to the positive matrix factorization problem.
Therefore, rotation makes the solution not unique.

(2-8)

(b) Scaling
If we have a positive matrix factorization of the form X =GF(X 3 0,G3 O,F3 0),
then
X= (Gc)(}F), (scalerc > 0) (2-9
c

is also a solution to the problem. Therefore, scaling also makes the solution not
unique.

No unique solution exists implies that the matrix A in Eqg. 2-4) is singular. This is
obvious from the following example:

Based on Eq. (2-3), for a 2 by 2 matrix X, the equations used to solve unknowns
fll’f12’gll’gzl ae

Gllfll + gllFll = Rll
Gllf12 + gllFIZ = I:212

(2-10)
GZlfll + ngFll = R21
G21f12 + ngFlz = R22'
If expressed in matrix form, it is
e;Gll 0 F11 0 l\éfllu ?R u
é a a
é Gll FlZ 0 Lerlzu 2?1 U (2_11)
&G, 0 O FlluefZlu R, u
é 1]
E0 G, 0 Foidnl Rad

The matrix on the left hand side is always singular, no matter what are the values G
and F. This can be shown via cdculating the determinant of the left hand Sde matrix.

Therefore, a regularization procedure should be carried out to eliminate the
singularity from the equation system [3. Regularization terms are added to the Q
function to be minimized a each iteration step,

3 o , o & s o
QGH=344((R,/6,)°+0d 4G, +da & F,”, (2-12)
i=1 j=1 i=1 h=1 h=1 j=1

where g and d are small quantities for enforcing regularization. EQ. (2-4) used to

compute the unknowns are expressed in normal equation format, and aso revised for the
new target function,

(ATWA + E)ox = ATWR - Ex|, (2-13)
where W matrix is a diagonal matrix of the weights w; =1/6%;, . For example, for 2 by
2 matrix case,

e, 0 0 O0u
W = g 0w, 0 0 3 (2-14)

eo 0 w, O0u

€0 0 0 w,i
E is a dagona matrix with g or d on the diagona positions.
x =|F, F, .. F., Gun G, .. G,]| represents the solution of matrices G
and F at current iteration step. Dx =[f,, f, .. for Ou O - gmpJT represents

the increment matrix for current step G and F matrices. After Dx issolved, G and F
metrices can be formed viathe increment rdationshipx;,, = X; +DX.

The detailed development of Eq. (2-13) is shown explicitly in [3]. The development
proceeds in a way that each term of the target function Q is linearized around current
iteration step solution of G and F matrices, and then minimizing Q (through the method
of matrix differentiation) leads to the norma equation desired.

(3) Positive Congtraints

Positive constraints can be enforced by adding penalty functions to the Q functior®
3 In our case, logarithmic terms are added. The revised target function Q is

g & £ 2 g d g g
Q(G,F):aa(Rij/Ou) -aaa|09Gih-baa|09th

i=1 j=1 i=1 h=1 h=1 j=1

v 5 g (2-15)
+gé a Gih2 +dg é thz’
i=l h=1 h=1 j=1
where a and b are small quantities used to control the strength of the penalty terms. It
is adso called logarithmic barrier method. It's obvious from Eq. (2-15) that when the
elementsof G or F get close to zero, large penaty of Q will come out. Therefore, this
method can keep the computed G and F from getting close to zero.

To use the logarithmic barrier method in our model, logarithmic terms in Q must be
approximated by quadratic functions™, for example, for the logarithmic function

f (y) =10g,,(y), (2-16)
the corresponding quadratic function is
a(y) =q(y- c,)? (2-17)
where
1
Cl ’Cz =Yo- 2y0 lr(yo) (2'18)

4In(10)y,” In(y)
can be derived by letting the value of the 1% derivative of f(y) and g(y) be equal at current
solution point yo.

Eq. (2-13) can be modified to be consstent with the new target function Q,

(ATWA + E +E JDx=ATWR - Ex, +E (X - x,), (2-19)
where E_ is a diagonal matrix with ca or ¢b on the diagona positions, here the
coefficient ¢; is defined in Eq. (2-18). X’ :[c§ ¢ .. cgm+">pJT is a vector with
c,(1£i £(m+n)p) defined in Eq. (2-18), the superscript i represents that c; is the
coefficient corresponding to the i variable in x (x is a (m+n)p” 1 matrix).

Dx = |.f11 fo o fon Ou Op - gmpJT represents the increment matrix for current
step G and F matrices. After Dx issolved, G and F matrices can be formed via the
increment relationshipx,,, = X, + DX.

However, this approximation of logarithmic penalty functions as quadratic functions
cannot prevent occasionally computed negative values appear in the solution). In such
cases, MATLAB Isgnonneg function is used to change the solution back to positive.
MATLAB command X = Isgnonneg(A, b) function return the vector X that minimizes
norm(A* X —b, 2), subjectto X 3 0.

Thus, we have derived an equation system that can be used to compute the increment
vector x with the knowledge of current iteration solution Xo.

(4) Implementation Pseudocode

a Satheinitid vaue of G and F matrices,

b. Formmatrix A in Eq. (2-4);

c. Form matrix B = ATWA , where W is the weight matrix, it is current hard-wired
as identity matrix in our code because we are not concerned with the physical meaning of
thematrix A;

d. Foommarix R =X - GF;

e. Formmatrix C=ATWR ;

f. Formmatrix E;

g Form matrix - EX,, where x; is a vector consists of the current iteration step G
and F matrices eement vaues,

h. Formmatrix E ;

I. Approximate logarithmic barrier functions as quadratic functions using Eq. (2-
18);

j. Formvector E (X - X,);

k. Form the equations system LHSDx = RHS of Eq. (2-19) by summating the
matrices computed above together;

. Solvethe equation inj™ step to get unknownsx, i.e,, g and f;

m. Form matrix F and G for next sep, with F=F+f and G =G +g;

n If F or G are not positive (this situation occasionally happens because
approximation of logarithmic functions with quadratic functions cannot enforce non
negative condition strictly), use MATLAB Isgnonneg function to adjust it back to
positive;

0. Evaluate error Q based on F and G matrices, if this value is smaler than our
prefixed error tolerance, then the algorithm converged and program stops. Otherwise,
goto step b to begin another iteration step.

(5) Computation Samples

Computation samples verify that our implementation is successful. For example, for a
matrix

61 2 30
& G
_et 5 6y
&7 8 9
Q0 11 12§

the output of our program when running a atolerance of 1.0e-3 (Initid vdueG = 0.5*
ones(4, 2); F=0.5* oney(2, 3);) isgiven below:

Converge at 21 step, tolerance = 0.001000, v_Qbar = 0.000126
G=

1.1943 0.1309

1.3492 1.2415

1.5042
1.6591

0.5520
2.6237
X-G*F=
-0.0026
-0.0020
-0.0014
-0.0008

2.3521
3.4627

1.3983
2.5063

0.0019
0.0017
0.0015
0.0013

2.2447
2.3890

0.0065
0.0054
0.0044
0.0033

3. A New PMF Algorithm with Rank-Deficient QR Decomposition

Notice that we do not have to add the regularization terms and logarithmic penalty
terms into the target function in Eq. (2-7), because:
Rank-Deficient least squares problems can be solved via QR decomposition
with column pivating [);
MATLAB Isgnonneg function can enforce the non-negativity of the matrices.
Therefore, in this section, we use MATLAB Isgnonneg function and rank-deficient QR
decomposition to solve positive matrix factorization problem.

(1) Salving rank-deficient least squar es problems using QR with pivoting

The QR decomposition of a rank-deficient matrix A can be written as.
AP=QR =[Q, QZ]SCE; Ff)ﬂ
e a
where A isamby n matrix with rank r, Ry isan invertible r by r matrix, Rz isar by (n-r)
matrix, Q1 isa mby r matrix, Q2 isa m by (m-r) matrix, P is a permutation matrix
introduced by pivoting.

(G

The least square problem min|[Ax - bf, hasasolution 51 of

7 _1 T AN
« = PgRl Q, b)g 3-2)
e 0 ¢

The detailed development of the above equation isin [5]. The permutation matrix P is
the only difference between Eq. (3-2) and the expression of x in [5)].

(2) Solution Space Partition 2

Redized that x =|f, f, .. f.. O, Gn .. gmpJT in Eq. (2-4) might consist

pn
of too many variables and cause the size of matrix A to be too large, in this algorithm, we
actudly break the solution procedure into two steps.

Let x, =[f,, f, .. fon a|", and solve the equations
Gf +agF =R (3-3
where g and F are known matrices from the previous iteration step. We have only (np+1)
unknownsiin this equation system, which will make the matrix sze smdler.

Eq. (3-3) can be written as
M X, = vect(R) (3-4)
where M1 matrix consists of many zeros and the remaining part is determined by

elements of F, G, and g matrices, and vect(R) is a vector for the matrix R expressed in
vector form with row dominant order.

Thenextpatistolet x, = |g, g, .. 9 a|", and solve the equations
aGf +gF =R (3-5
where G and f are known matrices from the previous iteration step. We have (mp+1)
unknowns in this equation system.

Eq. (3-5) can be written as
M,x, = vect(R) (3-6)
where M, matrix consists of many zeros and the remaining part is determined by

elements of G, F, and f matrices, and vect(R) is a vector for the matrix R expressed in
vector form with row dominant order.

(3) Algorithm Implementation Pseudocode

a Stinitid vdueodf G, F, f matrices,

b. Formmatrix M 1 in Eq. (3-4);

c. Foommarix R asR = X —GF;

d. Solve Eg. (3-4) usng QR with pivoting as described above;

e. Formnew maricesG=G+ag,F=F+f;

f. Formmatrix M 2 in Eq. (3-6);

g Formmatrix R asR = X — GF;

h. Solve Eg. (3-6) usng QR with pivoting as described above;

i. FormnewmaricesG=G+g,F=F+af;

p. If For G are not positive (because we did not enforce non-negativity using

pendty function), use MATLAB |sgnonneg function to adjust it back to pogtive;

J. Evaluate error Q based on F and G matrices, if this vaue is smaller than our
prefixed error tolerance, then the algorithm has converged and program stops.
Otherwise, goto step b to begin another iteration step.

(4) Computation Samples

Computation samples verify that our implementation is successful. For example, for a
meatrix

61 2 30
% 5 6!
e7 8 9u
&0 11 128

the output of our program when running a atolerance of 1.0e-3 (Initid vdueG = 0.5*
ones(4, 2); F=0.5* oney(2, 3);) isgiven below:

Converge at 4 step, tolerance = 0.001000, v_Qbar = 0.000856
G=

2.3098 0.6767

9.0492 0.5085

15.7886 0.3404

225280 0.1722
F=
0.4435 04782 05121
0 1.3233 2.6850
X-G*F=
-0.0244 -0.0000 -0.0000
-0.0132 -0.0000 -0.0000
-0.0020 0 -0.0000
0.0092 0 -0.0000

4. Computation, Comparison and Conclusion

We described the details of the four algorithms above and implemented them in
MATLAB. These four algorithms are: Euclidean Update, Divergence Update, PMF, and
PMF_DefQR.

Here are some aspects tested for persuasive results.
(1) Convergent Speed

All these algorithms start with some initial matrices G and F, and keep updating them
until convergence. Here convergence means that the cost functions (or the evaluation
functions) are satisfied. 1t's obvious that the number of iterations is a very important
vaue that can indicate the speed of an agorithm.

(2) Initial Value Selection

All these algorithms have the same problem: local minima problem. With some initial
values, G and F may reach some local minima, which cannot satisfy the cost functions
(or the evduation functions). So the agorithm cannot converge with these initid vaues.

Although all these algorithms have this problem, some algorithms are more sensitive
to initial values, which means with some random initial values, the possibility that they
cannot converge is large. While other algorithms are much better since for most of initial
vaues, these dgorithms can converge.

If an agorithm is not sensitive to the initial values, this means that this algorithm is
easy to usein awide area. So thisis dso avery important criterion we need to consider.

(3) Result Quality

The result quality is absolutely what we concern. Here result quality refers to the
closeness of X and GF. Since different algorithms use different cost functions (or
evauation functions), it's difficult to compare the result quality directly based on these
functions. As an alternative we use the 2-norm of the residual matrix (norm(X — GF, 2))
to evaluate the result qudity of dl these agorithms.

(4) Easiness of Implementation

It is obvious from our implementation efforts that NMF agorithms ¥ (Euclidean
Update and Divergence Update) are the easiest to implement. PMF algorithm @ is the
most difficult to implement, actually, most of our time is spent in this part because of
many hidden materials in the paper and the complexity of the agorithm. Our new
PMF_DefQR agorithm is relatively easier to implement compared with PMF algorithm
(21 and with better convergent speed.

The data in the table is the statistical information in the following conditions: each
algorithm is run on a matrix X for 100 times. Each time we use two random matrices G
and F as the initial matrices. Then we record the convergent rate, average convergence
steps and average norm of the residua matrix X — GF.

Euclidean Divergence PMF PMF DefQR
Convergent rate 58% 93% 100% 94%
Average convergence steps 223.7241 211.6774 18.8400 3.8723
Averagenormof X - GF 0.0308 0.0598 0.0205 0.0095

One thing that we need to mention here before we further discuss the advantages and
disadvantages of al four algorithms is the convergent speed. From the above table we
can see that generaly Euclidean Update and Divergence Update use hundreds of steps
while PMF and PMF_DefQR algorithms only use severa steps. But the difference of
running time between them is not so large as suggested by the convergent steps. That's
because in the Euclidean and Divergence algorithm, every step is just a multiplicative
update and consumes less time than PMF and PMF_DefQR agorithms, which need to
solve linear equations or do QR decompogtion.

Advantages and Disadvantages of Euclidean Update

Euclidean Update algorithm converges very slowly. From the above table we can
clearly seethat in our test case, it averagely takes more than 200 stepsiif it can converge.

Euclidean Update algorithm aso has the disadvantage that local minima may occur,
in which we cannot get a global optimal solution. The convergent rate of this algorithmis
quite low in our test, only 58%, which means in many cases, it converges to local minima
instead of the result that satisfies our requirement. So if we want to use this algorithm, we
need to be very careful to select the initial value in order to get a successful non-negative
factorization.

But if it can converge, the result quality is not bad comparing with other algorithms.
Also the dgorithm is very easy to implement.

Advantages and Disadvantages of Diver gence Update

Divergence Update algorithm converges very slowly. From the above table we can
seethat in our test case, it averagely takes more then 200 stepsiif it can converge.

Divergence Update algorithm aso has the disadvantage that local minima may occur,
in which we cannot get a global optimal solution. But from our test we can see that the
convergent rate (93%) is much better than the Euclidean Update algorithm. This means
that thisdgorithm is easier to use than the Eudidean dgorithm.

And this algorithm is also very easy to implement comparing with PMF and
PMF_DefQR dgorithm.,

But from the above table we can see that the result quality of this algorithm is not as
good as other algorithms. In order to get better results, we need to make the cost function
stricter, which generally means to reduce the convergent rate or increase the convergence
steps.

Advantages and Disadvantages of PMF algorithm

PMF algorithm 23 usually can converge faster compared with NMF algorithms [,
Also, PMF agorithm has an excellent merit in that it can deal with the weighted positive
matrix factorization problem, which is very important in environmental science,
spectroscopy and chemometrics 22 ¢ 7 where the matrix elements have clear physical
meanings.

Just like NMF agorithms, PMF agorithm aso has the disadvantage that local
minima may occur, in which we cannot get a global optimal solution. But from the above
table we can see that al the cases we test converge, which means that generally in PMF
algorithm, the selection of initial value is not that strict comparing with NMF algorithms.
Thisisagreat advantage of this dgorithm.

Also from the above table we can see that the result quality (which isindicated by the
average norm) of the PMF isalittle bit better than the NMF dgorithms.

But PMF agorithm needs much more time to implement comparing with NMF
agorithms, which is a disadvantage.

Advantages and Disadvantages of PMF algorithm

It is awesome that our new PMF_DefQR algorithm converges so fast, even compared
with the PMF agorithm. Also we can see that the result quality of our algorithm is very
good, aso better than the PMF agorithm.

Our new algorithm has another merit that it can be implemented very easily compared
with Paatero’s PMF dgorithm.

However, just like other algorithms, this new algorithm also has the disadvantage that
local minima may occur, in which we cannot get a globa optimal solution. But from the
above table we can see that the convergent rate of our algorithm is 94%, only dlightly less
than the PMF agorithm.

5. Future Work

One of the most important problems in the use of PMF algorithms to solve practical
problemsis rotation. As illustrated earlier in this paper, the existence of rotation resultsin
non-unique solution to the PMF problem. Through the use of regularization terms in the

target function Q, singularity of the equation system can be removed. Most of the positive
matrix factorizations have rotationa domains (“rotational domain” means the set of all
possible rotations) . However, our PMF al?orithm actually attempts to compute a
solution in the middle of the rotational domain . Computing the rotational domain of a
positive matrix factorization is an interesting research area.

It is well known that Singluar Value Decompostion (SVD) method can provide a
better and more accurate way to solve rank-deficient least squares problems compared
with QR with pivoting method. Therefore, it might be a good choice to use SVD instead
of QR with pivoting in the future version of this new PMF dgorithm.

References

[1] D. D. Lee, H. S. Seung. Algorithms for non-negative matrix factorization.

[2] P. Paatero, U. Tapper. Least sguares formulation of robust non-negative factor
andyss. Chemometr. Intdl. Lab. 37 (1997), 23-35.

[3] P. Paatero. A weighted non-negative least squares agorithm for three-way
‘PARAFAC' factor andysis. Chemometr. Intell. Lab. 38 (1997), 223-242.

[4] P. Paatero, P. K. Hopke, etc. Understanding and controlling rotations in factor
analytic models. Chemometr. Intell. Lab. 60 (2002), 253-264.

[5] J. W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics, Philadelphia. 1997.

[6] S. Juntto, P. Paatero. Analysis of daily precipitation data by positive matrix
factorization. Environmetrics, 5 (1994), 127-144.

[7] P. Paatero, U. Tapper. Positive matrix factorization: a nortnegative factor model with
optimal utilization of error estimates of data vaues. Environmetrics, 5 (1994), 111-126.

[8] C. L. Lawson, R. J Hanson. Solving least sguares problems. Prentice-Hall,
Englewood Cliffs, NJ, 1974.

