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[Abstract] 
 

Three non-negative matrix factorization algorithms proposed by Lee & Seung [1] and 
Paatero [2], and the implementation of these algorithms are discussed in this report. The 
advantages and disadvantages of these three algorithms are compared based on initial 
matrix selection, convergent speed, result quality, and easiness to implement. 
 

A new non-negative matrix factorization algorithm using rank-deficient QR 
decomposition is presented in this report. Computation samples manifest the efficiency of 
this new algorithm. The comparison of this new algorithm with the other three algorithms 
is also given in the report. 
 
 
0. Introduction  
 

Non-negative matrix factorization (NMF) [1]: given a non-negative nm ×  matrix X, 
find non-negative matrix factors G ( pm × ) and F ( np × ) such that X ≈ GF, where p is a 
smaller number compared to m and n. The reasonable value of p depends on the property 
of the input matrix X. For some matrices, if p is too small, no reasonable solution exists. 
 

Non-negative matrix factorization is a very important matrix factorization in Linear 
Algebra. It is widely used in environmental science, spectroscopy and chemometrics [2, 3, 

6, 7] where the matrix elements have clear physical meanings. 
 

Two easy to implement algorithms are presented in [1]. These two algorithms are 
based on two different multiplicative update rules. Convergence proofs are also provided 
in the paper [1], and at least locally optimal solutions are guaranteed to be found.  
 

Positive Matrix Factorization (PMF) algorithm [2, 7] was first proposed by Dr. 
Paatero. It is time-efficient compared with commonly used Alternative Least Squares 
algorithm (ALS) [8] though with some similarities. PMF can be considered as a 
generalization of the ALS algorithm [2].  
 

In this paper, NMF algorithms [1] and PMF algorithm [2] are implemented in 
MATLAB. Their basic implementation details are illustrated in the discussion. The 
comparisons are carried out based on the convergent rate, initial matrix selection, result 



quality, and easiness to implement. Also, a new PMF algorithm using rank-deficient QR 
decomposition with column pivoting is discussed and implemented.  
 
 
1. Non-negative Matrix Factorization with Multiplicative Update [1]  
 
(1) Cost Function of NMF Algorithms 
 

Since the non-negative factorization is an approximation factorization X ≈ GF, we 
need to define the cost function to qualify this approximation. 
 

One natural way is to use the Euclidean distance between two matrices to evaluate 
the approximation. Assume matrix A and B, the Euclidean distance between them is 
defined as: 
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It’s lower bounded by 0 and equals to 0 if and only if A = B [1]. 
 

Another useful cost function is the divergence of A and B. It’s defined as: 
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We call it “divergence” instead of “distance” because it’s not symmetric between A and 
B. It’s also lower bounded by 0 and equals to 0 if and only if A = B [1]. 
 

(2) NMF Algorithm 1 by Lee & Seung (Euclidean Update) [1]: Minimize X - GF
2
 

with respect to G and F, subject to the constraints G, F 0≥ . 
1. Initialize G and F to be two random non-negative matrices; 

2. Keep updating G and F until X - GF
2
 converges. The multiplicative update 

rules are as the following: 
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During the above updates, we should update G and F “simultaneously”. We 

shouldn’t update the whole matrix F first followed by updating the matrix G. Instead, 
after updating one row of F, we need to update the corresponding column of G. So 
actually we update F and G alternatively. When update a row of F or a column of G, we 
don’t need to calculate out the whole matrices GTX, GTGF, XFT  and GTFFT  as suggested 
by the appearance of the rules, since we only need one row (or column) of these matrices 
during one update. 
 
(3) Computation Sample of Euclidean Update 
 

Computation samples verify that our implementation is successful. For example, for a 
matrix 
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the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 * 
ones(4, 2); F = 0.5 * ones(2, 3); ) is given below: 
 
Converge at 126 step, tolerance = 0.001000, euc_val = 0.000976 
G = 
    0.1475    1.5118 
    0.6416    1.1179 
    1.1391    0.6933 
    1.6271    0.3548 
F = 
    6.1231    6.6129    7.1000 
    0.0644    0.6761    1.2929 
X-G*F= 
   -0.0003    0.0026   -0.0017 
   -0.0007    0.0012   -0.0009 
   -0.0194   -0.0014    0.0161 

0.0139   -0.0001   -0.0116 
 
(4) NMF Algorithm 2 by Lee & Seung (Divergence Update) [1]: Minimize D (X || GF) 
with respect to G and F, subject to the constraints G, F 0≥ . 

1. Initialize G and F to be two random non-negative matrices; 
2. Keep updating G and F until D (X || GF) converges. The multiplicative update 

rules are as the following: 
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During the above updates, we should update G and F “simultaneously”. We 

shouldn’t update the whole matrix F first followed by updating the matrix G. Instead, 
after updating one row of F, we need to update the corresponding column of G. So 
actually we update F and G alternatively. 
 
(5) Computation Sample of Divergence Update 
 

Computation samples verify that our implementation is successful. For example, for a 
matrix 
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the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 * 
ones(4, 2); F = 0.5 * ones(2, 3); ) is given below: 
 
Converge at 80 step, tolerance = 0.001000, div_val = 0.000965 
G = 
    0.1588    1.2308 
    0.6708    0.9005 
    1.1861    0.5435 
    1.6867    0.3038 
F = 
    5.9011    6.3785    6.8525 
    0.0509    0.8006    1.5546 
X-G*F= 
    0.0000    0.0015   -0.0018 
   -0.0044    0.0003    0.0034 
   -0.0270   -0.0008    0.0273 
    0.0315   -0.0016   -0.0300 
 



2. The Iterative Positive Matrix Factorization (PMF) Algorithm [2] 
 
(1) Basic Equation 
 

The basic equations for this algorithm are:  
,))(( XfFgG =++   (2-1) 

GFXR −=  is the residual of factorization, f is a matrix with the same size as F matrix, 
and g is matrix with the same size as G matrix. We need to compute the unknowns g and 
f at each computation step, and then we can move on to the next step with updated 
matrices G = G + g and F = F + f. Initial values of G and F matrices are provided, 
currently we tried different initial matrices such as ones and random matrices. 
 

For the above nonlinear equation, Newton-Raphson method is a good choice, 
provided we are lucky enough that we do not encounter non-positive-definite matrix [2]. 
Basically, we cannot ensure that non-positive-definite matrix will not occur, although the 
probability is small, therefore, using Newton_Raphson method to solve this nonlinear 
equation system will sometimes fail. Our current MATLAB code actually implemented 
using the second alternative (Named Gauss-Newton procedure), which is explained in the 
following text. 
 

Equation (2-1) can be simplified by omitting the 2nd order term gf [2], which results in 
a linear equation system 

.RFgGf =+  (2-2) 
If matrix X is m by n, G is m by p, and F is p by n, reiterating the above equation 

results in a linear equation system with (m+n) p unknowns in f and g, 
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where ihG  represents the ith row, hth column element of matrix G. The above linear 
equation system can be written in matrix form,  

)(RxA vect=∆  (2-4) 

where [ ] Tgggfffx mppn ...... 12111211=∆ , matrix A consists of many zeros 
and the remaining part are elements of G and F matrices, and vect(R) is a vector for the 
matrix R expressed in vector form with row dominant order. For example, if  
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To check whether the algorithm has got convergent results, the error function is 

evaluated at each step [2],  
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where ó  is the standard deviation matrix of the input matrix X. 
 

The standard deviation matrix ó  is related to the physical meaning of the problem, 
and makes our current method a weighted least squares problem (Define weights 

2/1 ijijw σ= ). In practice, you may put less weight on some part of the data in the X 
matrix if you know in advance that the data might have some errors because of 
experimental errors or other reasons. Currently in our code it is evaluated to be all-one 
matrix (equal weights for all elements of X) simply because we are only concerned with 
the algorithm itself, not its physical meaning at this time. 
 

If the above function Q gets a small quantity below our prefixed error tolerance, then 
this algorithm has converged.  
 
(2) Regularization Procedure 
 

Several factors determine that we cannot have a unique solution to the above equation 
system. 
 

(a) Rotation 
If we have a positive matrix factorization of the form )0,0,0( ≥≥≥= FGXGFX  
(where 0≥G  means every element of matrix G is greater than or equal to 0), then if 
we can find a square matrix T, s.t.,  
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Then we have found another solution to the positive matrix factorization problem. 
Therefore, rotation makes the solution not unique.  

 
(b) Scaling 
If we have a positive matrix factorization of the form )0,0,0( ≥≥≥= FGXGFX , 
then 
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is also a solution to the problem. Therefore, scaling also makes the solution not 
unique. 

 
No unique solution exists implies that the matrix A in Eq. (2-4) is singular. This is 

obvious from the following example: 
 

Based on Eq. (2-3), for a 2 by 2 matrix X, the equations used to solve unknowns 

21111211 ,,, ggff  are 
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If expressed in matrix form, it is 
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The matrix on the left hand side is always singular, no matter what are the values G 

and F. This can be shown via calculating the determinant of the left hand side matrix. 
 

Therefore, a regularization procedure should be carried out to eliminate the 
singularity from the equation system [2, 3]. Regularization terms are added to the Q 
function to be minimized at each iteration step, 
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where γ  and δ  are small quantities for enforcing regularization. Eq. (2-4) used to 
compute the unknowns are expressed in normal equation format, and also revised for the 
new target function, 
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where W matrix is a diagonal matrix of the weights ijijw 2/1 ó= , . For example, for 2 by 
2 matrix case,  
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Ë  is a diagonal matrix with γ  or δ  on the diagonal positions. 

[ ] TGGGFFFx mppni ...... 12111211=  represents the solution of matrices G 

and F at current iteration step. [ ] Tgggfffx mppn ...... 12111211=∆  represents 
the increment matrix for current step G and F matrices. After x∆  is solved, G and F 
matrices can be formed via the increment relationship xxx ∆+=+ ii 1 . 
 

The detailed development of Eq. (2-13) is shown explicitly in [3]. The development 
proceeds in a way that each term of the target function Q is linearized around current 
iteration step solution of G and F matrices, and then minimizing Q (through the method 
of matrix differentiation) leads to the normal equation desired. 
 
(3) Positive Constraints 



 
Positive constraints can be enforced by adding penalty functions to the Q function[2, 

3]. In our case, logarithmic terms are added. The revised target function Q is 

,

loglog)/(),(

1 1

2

1 1

2

1 1 111 1

2

∑∑∑∑

∑ ∑∑∑∑∑

= == =

= = === =

++

−−=

p

h

n

j
hj

m

i

p

h
ih

m

i

p

h

n

j
hj

p

h
ih

m

i

n

j
ijijQ

FG

FGóRFG

δγ

βα

 (2-15) 

where α  and β  are small quantities used to control the strength of the penalty terms. It 
is also called logarithmic barrier method. It’s obvious from Eq. (2-15) that when the 
elements of G or F get close to zero, large penalty of Q will come out. Therefore, this 
method can keep the computed G and F from getting close to zero.  
 

To use the logarithmic barrier method in our model, logarithmic terms in Q must be 
approximated by quadratic functions [3], for example, for the logarithmic function  

),(log)( 10 yyf =  (2-16) 
the corresponding quadratic function is 
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can be derived by letting the value of the 1st derivative of f(y) and q(y) be equal at current 
solution point y0.  
 

Eq. (2-13) can be modified to be consistent with the new target function Q, 
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where pË  is a diagonal matrix with  α1c  or β1c  on the diagonal positions, here the 

coefficient c1 is defined in Eq. (2-18).  [ ] Tx pnmccc )(
2

2
2

1
2

* ... +=  is a vector with 

))(1(2 pnmic i +≤≤  defined in Eq. (2-18), the superscript i represents that c2 is the 
coefficient corresponding to the ith variable in x (x is a 1)( ×+ pnm matrix). 

[ ] Tgggfffx mppn ...... 12111211=∆  represents the increment matrix for current 
step G and F matrices. After x∆  is solved, G and F matrices can be formed via the 
increment relationship xxx ∆+=+ ii 1 . 
 

However, this approximation of logarithmic penalty functions as quadratic functions 
cannot prevent occasionally computed negative values appear in the solution [3]. In such 
cases, MATLAB lsqnonneg function is used to change the solution back to positive. 
MATLAB command X = lsqnonneg(A, b) function return the vector X that minimizes 
norm(A*X – b, 2), subject to 0≥X .  
 

Thus, we have derived an equation system that can be used to compute the increment 
vector x with the knowledge of current iteration solution x0. 
 



(4) Implementation Pseudocode 
 

a. Set the initial value of G and F matrices;  
b. Form matrix A in Eq. (2-4);  
c. Form matrix WAAB T= , where W is the weight matrix, it is current hard-wired 

as identity matrix in our code because we are not concerned with the physical meaning of 
the matrix A;  

d. Form matrix GFXR −= ;  
e. Form matrix WRAC T= ; 
f. Form matrix Ë ;  
g. Form matrix iËx− , where xi is a vector consists of the current iteration step G 

and F matrices element values;  
h. Form matrix pË ;  
i. Approximate logarithmic barrier functions as quadratic functions using Eq. (2-

18);  
j. Form vector )( *

ip xxË − ;  
k. Form the equations system RHSxLHS =∆ of Eq. (2-19) by summating the 

matrices computed above together;  
l. Solve the equation in jth step to get unknowns x, i.e., g and f;  
m. Form matrix F and G for next step, with fFF +=  and gGG += ;  
n. If F or G are not positive (this situation occasionally happens because 

approximation of logarithmic functions with quadratic functions cannot enforce non-
negative condition strictly), use MATLAB lsqnonneg function to adjust it back to 
positive;  

o. Evaluate error Q based on F and G matrices, if this value is smaller than our 
prefixed error tolerance, then the algorithm converged and program stops. Otherwise, 
goto step b to begin another iteration step.  
 
(5) Computation Samples 
 

Computation samples verify that our implementation is successful. For example, for a 
matrix 
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the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 * 
ones(4, 2); F = 0.5 * ones(2, 3); ) is given below: 
 
Converge at 21 step, tolerance = 0.001000, v_Qbar = 0.000126 
G = 
    1.1943    0.1309 
    1.3492    1.2415 



    1.5042    2.3521 
    1.6591    3.4627 
F = 
    0.5520    1.3983    2.2447 
    2.6237    2.5063    2.3890 
X-G*F= 
   -0.0026    0.0019    0.0065 
   -0.0020    0.0017    0.0054 
   -0.0014    0.0015    0.0044 
   -0.0008    0.0013    0.0033 
 



3. A New PMF Algorithm with Rank-Deficient QR Decomposition 
 

Notice that we do not have to add the regularization terms and logarithmic penalty 
terms into the target function in Eq. (2-7), because:  

• Rank-Deficient least squares problems can be solved via QR decomposition 
with column pivoting [5];  

• MATLAB lsqnonneg function can enforce the non-negativity of the matrices.  
Therefore, in this section, we use MATLAB lsqnonneg function and rank-deficient QR 
decomposition to solve positive matrix factorization problem. 
 
(1) Solving rank-deficient least squares problems using QR with pivoting 
 

The QR decomposition of a rank-deficient matrix A can be written as: 

[ ] ,







==

00

RR
QQQRAP 21

21  (3-1) 

where A is a m by n matrix with rank r, R1 is an invertible r by r matrix, R2 is a r by (n-r) 
matrix, Q1 is a m by r matrix, Q2 is a m by (m-r) matrix, P is a permutation matrix 
introduced by pivoting. 
 

The least square problem 
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The detailed development of the above equation is in [5]. The permutation matrix P is 

the only difference between Eq. (3-2) and the expression of x in [5].  
 
(2) Solution Space Partition [2] 
 

Realized that [ ] Tgggfffx mppn ...... 12111211=  in Eq. (2-4) might consist 
of too many variables and cause the size of matrix A to be too large, in this algorithm, we 
actually break the solution procedure into two steps. 

 
Let  [ ] T

1 fffx αpn...1211= , and solve the equations 
RgFGf =+α  (3-3) 

where g and F are known matrices from the previous iteration step. We have only (np+1) 
unknowns in this equation system, which will make the matrix size smaller. 
 

Eq. (3-3) can be written as 
)(RxM 11 vect=  (3-4) 

where M1 matrix consists of many zeros and the remaining part is determined by 
elements of F, G, and g matrices, and vect(R) is a vector for the matrix R expressed in 
vector form with row dominant order. 
 



The next part is to let [ ] T
2 gggx αpn...1211= , and solve the equations 

RgFGf =+α  (3-5) 
where G and f are known matrices from the previous iteration step. We have (mp+1) 
unknowns in this equation system.  
 

Eq. (3-5) can be written as 
)(22 RxM vect=  (3-6) 

where M2 matrix consists of many zeros and the remaining part is determined by 
elements of G, F, and f matrices, and vect(R) is a vector for the matrix R expressed in 
vector form with row dominant order. 
 
(3) Algorithm Implementation Pseudocode 
 

a. Set initial value of G, F, f matrices;  
b. Form matrix M1 in Eq. (3-4);  
c. Form matrix R as R = X – GF;  
d. Solve Eq. (3-4) using QR with pivoting as described above;  
e. Form new matrices G = G + α g, F = F + f ; 
f. Form matrix M2 in Eq. (3-6); 
g. Form matrix R as R = X – GF; 
h. Solve Eq. (3-6) using QR with pivoting as described above;  
i. Form new matrices G = G + g, F = F +α f ; 
p. If F or G are not positive (because we did not enforce non-negativity using 

penalty function), use MATLAB lsqnonneg function to adjust it back to positive;  
j. Evaluate error Q based on F and G matrices, if this value is smaller than our 

prefixed error tolerance, then the algorithm has converged and program stops. 
Otherwise, goto step b to begin another iteration step.  

 
 (4) Computation Samples 
 

Computation samples verify that our implementation is successful. For example, for a 
matrix 

,

121110

987

654

321



















=X  

the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 * 
ones(4, 2); F = 0.5 * ones(2, 3); ) is given below: 
 

Converge at 4 step, tolerance = 0.001000, v_Qbar = 0.000856 
G = 
    2.3098    0.6767 
    9.0492    0.5085 
   15.7886    0.3404 



   22.5280    0.1722 
F = 
    0.4435    0.4782    0.5121 
         0    1.3233    2.6850 
X-G*F= 
   -0.0244   -0.0000   -0.0000 
   -0.0132   -0.0000   -0.0000 
   -0.0020         0   -0.0000 
    0.0092         0   -0.0000 

 



4. Computation, Comparison and Conclusion 
 

We described the details of the four algorithms above and implemented them in 
MATLAB. These four algorithms are: Euclidean Update, Divergence Update, PMF, and 
PMF_DefQR. 
 

Here are some aspects tested for persuasive results: 
 
(1) Convergent Speed 
 

All these algorithms start with some initial matrices G and F, and keep updating them 
until convergence. Here convergence means that the cost functions (or the evaluation 
functions) are satisfied. It’s obvious that the number of iterations is a very important 
value that can indicate the speed of an algorithm. 
 
(2) Initial Value Selection 
 

All these algorithms have the same problem: local minima problem. With some initial 
values, G and F may reach some local minima, which cannot satisfy the cost functions 
(or the evaluation functions). So the algorithm cannot converge with these initial values. 
 

Although all these algorithms have this problem, some algorithms are more sensitive 
to initial values, which means with some random initial values, the possibility that they 
cannot converge is large. While other algorithms are much better since for most of initial 
values, these algorithms can converge. 
 

If an algorithm is not sensitive to the initial values, this means that this algorithm is 
easy to use in a wide area. So this is also a very important criterion we need to consider. 
 
(3) Result Quality 
 

The result quality is absolutely what we concern. Here result quality refers to the 
closeness of X and GF. Since different algorithms use different cost functions (or 
evaluation functions), it’s difficult to compare the result quality directly based on these 
functions. As an alternative we use the 2-norm of the residual matrix (norm(X – GF, 2)) 
to evaluate the result quality of all these algorithms. 
 
(4) Easiness of Implementation 
 

It is obvious from our implementation efforts that NMF algorithms [1] (Euclidean 
Update and Divergence Update) are the easiest to implement. PMF algorithm [2] is the 
most difficult to implement, actually, most of our time is spent in this part because of 
many hidden materials in the paper and the complexity of the algorithm. Our new 
PMF_DefQR algorithm is relatively easier to implement  compared with PMF algorithm 
[2], and with better convergent speed. 
 



The data in the table is the statistical information in the following conditions: each 
algorithm is run on a matrix X for 100 times. Each time we use two random matrices G 
and F as the initial matrices. Then we record the convergent rate, average convergence 
steps and average norm of the residual matrix X – GF. 
 
 Euclidean Divergence PMF PMF_DefQR 
Convergent rate 58% 93% 100% 94% 
Average convergence steps 223.7241 211.6774 18.8400 3.8723 
Average norm of X - GF 0.0308 0.0598 0.0205 0.0095 
 

One thing that we need to mention here before we further discuss the advantages and 
disadvantages of all four algorithms is the convergent speed. From the above table we 
can see that generally Euclidean Update and Divergence Update use hundreds of steps 
while PMF and PMF_DefQR algorithms only use several steps. But the difference of 
running time between them is not so large as suggested by the convergent steps. That’s 
because in the Euclidean and Divergence algorithm, every step is just a multiplicative 
update and consumes less time than PMF and PMF_DefQR algorithms, which need to 
solve linear equations or do QR decomposition. 
 
Advantages and Disadvantages of Euclidean Update 
 

Euclidean Update algorithm converges very slowly. From the above table we can 
clearly see that in our test case, it averagely takes more than 200 steps if it can converge. 
 

Euclidean Update algorithm also has the disadvantage that local minima may occur, 
in which we cannot get a global optimal solution. The convergent rate of this algorithm is 
quite low in our test, only 58%, which means in many cases, it converges to local minima 
instead of the result that satisfies our requirement. So if we want to use this algorithm, we 
need to be very careful to select the initial value in order to get a successful non-negative 
factorization. 
 

But if it can converge, the result quality is not bad comparing with other algorithms. 
Also the algorithm is very easy to implement. 
 
Advantages and Disadvantages of Divergence Update 
 

Divergence Update algorithm converges very slowly. From the above table we can 
see that in our test case, it averagely takes more then 200 steps if it can converge. 
 

Divergence Update algorithm also has the disadvantage that local minima may occur, 
in which we cannot get a global optimal solution. But from our test we can see that the 
convergent rate (93%) is much better than the Euclidean Update algorithm. This means 
that this algorithm is easier to use than the Euclidean algorithm. 
 

And this algorithm is also very easy to implement comparing with PMF and 
PMF_DefQR algorithm. 



 
But from the above table we can see that the result quality of this algorithm is not as 

good as other algorithms. In order to get better results, we need to make the cost function 
stricter, which generally means to reduce the convergent rate or increase the convergence 
steps. 
 
Advantages and Disadvantages of PMF algorithm 
 

PMF algorithm [2, 3] usually can converge faster compared with NMF algorithms [1]. 
Also, PMF algorithm has an excellent merit in that it can deal with the weighted positive 
matrix factorization problem, which is very important in environmental science, 
spectroscopy and chemometrics [2, 3, 6, 7] where the matrix elements have clear physical 
meanings. 
 

Just like NMF algorithms, PMF algorithm also has the disadvantage that local 
minima may occur, in which we cannot get a global optimal solution. But from the above 
table we can see that all the cases we test converge, which means that generally in PMF 
algorithm, the selection of initial value is not that strict comparing with NMF algorithms. 
This is a great advantage of this algorithm. 
 

Also from the above table we can see that the result quality (which is indicated by the 
average norm) of the PMF is a little bit better than the NMF algorithms. 
 

But PMF algorithm needs much more time to implement comparing with NMF 
algorithms, which is a disadvantage. 
 
Advantages and Disadvantages of PMF algorithm 
 

It is awesome that our new PMF_DefQR algorithm converges so fast, even compared 
with the PMF algorithm. Also we can see that the result quality of our algorithm is very 
good, also better than the PMF algorithm. 
 

Our new algorithm has another merit that it can be implemented very easily compared 
with Paatero’s PMF algorithm. 
 

However, just like other algorithms, this new algorithm also has the disadvantage that 
local minima may occur, in which we cannot get a global optimal solution. But from the 
above table we can see that the convergent rate of our algorithm is 94%, only slightly less 
than the PMF algorithm. 
 
 
5. Future Work 
 

One of the most important problems in the use of PMF algorithms to solve practical 
problems is rotation. As illustrated earlier in this paper, the existence of rotation results in 
non-unique solution to the PMF problem. Through the use of regularization terms in the 



target function Q, singularity of the equation system can be removed. Most of the positive 
matrix factorizations have rotational domains (“rotational domain” means the set of all 
possible rotations) [4]. However, our PMF algorithm actually attempts to compute a 
solution in the middle of the rotational domain [4]. Computing the rotational domain of a 
positive matrix factorization is an interesting research area.  
 

It is well known that Singluar Value Decompostion (SVD) method can provide a 
better and more accurate way to solve rank-deficient least squares problems compared 
with QR with pivoting method. Therefore, it might be a good choice to use SVD instead 
of QR with pivoting in the future version of this new PMF algorithm.  
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