

Existing and New Algorithms for Non-negative Matrix
Factorization

By Wenguo Liu & Jianliang Yi

[Abstract]

Three non-negative matrix factorization algorithms proposed by Lee & Seung [1] and
Paatero [2], and the implementation of these algorithms are discussed in this report. The
advantages and disadvantages of these three algorithms are compared based on initial
matrix selection, convergent speed, result quality, and easiness to implement.

A new non-negative matrix factorization algorithm using rank-deficient QR
decomposition is presented in this report. Computation samples manifest the efficiency of
this new algorithm. The comparison of this new algorithm with the other three algorithms
is also given in the report.

0. Introduction

Non-negative matrix factorization (NMF) [1]: given a non-negative nm × matrix X,
find non-negative matrix factors G (pm ×) and F (np ×) such that X ≈ GF, where p is a
smaller number compared to m and n. The reasonable value of p depends on the property
of the input matrix X. For some matrices, if p is too small, no reasonable solution exists.

Non-negative matrix factorization is a very important matrix factorization in Linear
Algebra. It is widely used in environmental science, spectroscopy and chemometrics [2, 3,

6, 7] where the matrix elements have clear physical meanings.

Two easy to implement algorithms are presented in [1]. These two algorithms are
based on two different multiplicative update rules. Convergence proofs are also provided
in the paper [1], and at least locally optimal solutions are guaranteed to be found.

Positive Matrix Factorization (PMF) algorithm [2, 7] was first proposed by Dr.
Paatero. It is time-efficient compared with commonly used Alternative Least Squares
algorithm (ALS) [8] though with some similarities. PMF can be considered as a
generalization of the ALS algorithm [2].

In this paper, NMF algorithms [1] and PMF algorithm [2] are implemented in
MATLAB. Their basic implementation details are illustrated in the discussion. The
comparisons are carried out based on the convergent rate, initial matrix selection, result

quality, and easiness to implement. Also, a new PMF algorithm using rank-deficient QR
decomposition with column pivoting is discussed and implemented.

1. Non-negative Matrix Factorization with Multiplicative Update [1]

(1) Cost Function of NMF Algorithms

Since the non-negative factorization is an approximation factorization X ≈ GF, we
need to define the cost function to qualify this approximation.

One natural way is to use the Euclidean distance between two matrices to evaluate
the approximation. Assume matrix A and B, the Euclidean distance between them is
defined as:

.)(
,

22 ∑ −=−
ji

ijij BABA (1-1)

It’s lower bounded by 0 and equals to 0 if and only if A = B [1].

Another useful cost function is the divergence of A and B. It’s defined as:

D .)log()||(
,

∑ +−=
ji

ijij
ij

ij
ij BA

B

A
ABA (1-2)

We call it “divergence” instead of “distance” because it’s not symmetric between A and
B. It’s also lower bounded by 0 and equals to 0 if and only if A = B [1].

(2) NMF Algorithm 1 by Lee & Seung (Euclidean Update) [1]: Minimize X - GF
2

with respect to G and F, subject to the constraints G, F 0≥ .
1. Initialize G and F to be two random non-negative matrices;

2. Keep updating G and F until X - GF
2
 converges. The multiplicative update

rules are as the following:

.
)(

)(
,

)(

)(

ia
TT

ia
T

iaia
a

T

a
T

aa FFG

XF
GG

GFG

XG
FF ==

µ

µ
µµ (1-3)

During the above updates, we should update G and F “simultaneously”. We

shouldn’t update the whole matrix F first followed by updating the matrix G. Instead,
after updating one row of F, we need to update the corresponding column of G. So
actually we update F and G alternatively. When update a row of F or a column of G, we
don’t need to calculate out the whole matrices GTX, GTGF, XFT and GTFFT as suggested
by the appearance of the rules, since we only need one row (or column) of these matrices
during one update.

(3) Computation Sample of Euclidean Update

Computation samples verify that our implementation is successful. For example, for a
matrix

,

121110

987

654

321



















=X

the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 *
ones(4, 2); F = 0.5 * ones(2, 3);) is given below:

Converge at 126 step, tolerance = 0.001000, euc_val = 0.000976
G =
 0.1475 1.5118
 0.6416 1.1179
 1.1391 0.6933
 1.6271 0.3548
F =
 6.1231 6.6129 7.1000
 0.0644 0.6761 1.2929
X-G*F=
 -0.0003 0.0026 -0.0017
 -0.0007 0.0012 -0.0009
 -0.0194 -0.0014 0.0161

0.0139 -0.0001 -0.0116

(4) NMF Algorithm 2 by Lee & Seung (Divergence Update) [1]: Minimize D (X || GF)
with respect to G and F, subject to the constraints G, F 0≥ .

1. Initialize G and F to be two random non-negative matrices;
2. Keep updating G and F until D (X || GF) converges. The multiplicative update

rules are as the following:

.
)(/

,
)(/

∑
∑

∑
∑ ==

v av

iia

iaia

k ka

ii iia
aa F

GFXF
GG

G

GFXG
FF

µµ µµµµ
µµ (1-4)

During the above updates, we should update G and F “simultaneously”. We

shouldn’t update the whole matrix F first followed by updating the matrix G. Instead,
after updating one row of F, we need to update the corresponding column of G. So
actually we update F and G alternatively.

(5) Computation Sample of Divergence Update

Computation samples verify that our implementation is successful. For example, for a
matrix

,

121110

987

654

321



















=X

the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 *
ones(4, 2); F = 0.5 * ones(2, 3);) is given below:

Converge at 80 step, tolerance = 0.001000, div_val = 0.000965
G =
 0.1588 1.2308
 0.6708 0.9005
 1.1861 0.5435
 1.6867 0.3038
F =
 5.9011 6.3785 6.8525
 0.0509 0.8006 1.5546
X-G*F=
 0.0000 0.0015 -0.0018
 -0.0044 0.0003 0.0034
 -0.0270 -0.0008 0.0273
 0.0315 -0.0016 -0.0300

2. The Iterative Positive Matrix Factorization (PMF) Algorithm [2]

(1) Basic Equation

The basic equations for this algorithm are:
,))((XfFgG =++ (2-1)

GFXR −= is the residual of factorization, f is a matrix with the same size as F matrix,
and g is matrix with the same size as G matrix. We need to compute the unknowns g and
f at each computation step, and then we can move on to the next step with updated
matrices G = G + g and F = F + f. Initial values of G and F matrices are provided,
currently we tried different initial matrices such as ones and random matrices.

For the above nonlinear equation, Newton-Raphson method is a good choice,
provided we are lucky enough that we do not encounter non-positive-definite matrix [2].
Basically, we cannot ensure that non-positive-definite matrix will not occur, although the
probability is small, therefore, using Newton_Raphson method to solve this nonlinear
equation system will sometimes fail. Our current MATLAB code actually implemented
using the second alternative (Named Gauss-Newton procedure), which is explained in the
following text.

Equation (2-1) can be simplified by omitting the 2nd order term gf [2], which results in
a linear equation system

.RFgGf =+ (2-2)
If matrix X is m by n, G is m by p, and F is p by n, reiterating the above equation

results in a linear equation system with (m+n) p unknowns in f and g,

,
11

ij

p

h
hjih

p

h
hjih RFgfG =+ ∑∑

==

 (2-3)

where ihG represents the ith row, hth column element of matrix G. The above linear
equation system can be written in matrix form,

)(RxA vect=∆ (2-4)

where [] Tgggfffx mppn 12111211=∆ , matrix A consists of many zeros
and the remaining part are elements of G and F matrices, and vect(R) is a vector for the
matrix R expressed in vector form with row dominant order. For example, if

,
2221

1211








=

rr

rr
R (2-5)

then

.)(

22

21

12

11



















=

r

r

r

r

vect R (2-6)

To check whether the algorithm has got convergent results, the error function is

evaluated at each step [2],

,)/(),(
1 1

2∑∑
= =

=
m

i

n

j
ijijQ óRFG (2-7)

where ó is the standard deviation matrix of the input matrix X.

The standard deviation matrix ó is related to the physical meaning of the problem,
and makes our current method a weighted least squares problem (Define weights

2/1 ijijw σ=). In practice, you may put less weight on some part of the data in the X
matrix if you know in advance that the data might have some errors because of
experimental errors or other reasons. Currently in our code it is evaluated to be all-one
matrix (equal weights for all elements of X) simply because we are only concerned with
the algorithm itself, not its physical meaning at this time.

If the above function Q gets a small quantity below our prefixed error tolerance, then
this algorithm has converged.

(2) Regularization Procedure

Several factors determine that we cannot have a unique solution to the above equation
system.

(a) Rotation
If we have a positive matrix factorization of the form)0,0,0(≥≥≥= FGXGFX
(where 0≥G means every element of matrix G is greater than or equal to 0), then if
we can find a square matrix T, s.t.,

.0,0

,1

≥≥

=
−

−

FTGT

FGTTX
1

 (2-8)

Then we have found another solution to the positive matrix factorization problem.
Therefore, rotation makes the solution not unique.

(b) Scaling
If we have a positive matrix factorization of the form)0,0,0(≥≥≥= FGXGFX ,
then

)0(),
1

)((>= cscalerF
c

cGX (2-9)

is also a solution to the problem. Therefore, scaling also makes the solution not
unique.

No unique solution exists implies that the matrix A in Eq. (2-4) is singular. This is

obvious from the following example:

Based on Eq. (2-3), for a 2 by 2 matrix X, the equations used to solve unknowns

21111211 ,,, ggff are

.2212211221

2111211121

1212111211

1111111111

RFgfG

RFgfG

RFgfG

RFgfG

=+
=+
=+
=+

 (2-10)

If expressed in matrix form, it is

.

00

00

00

00

22

21

12

11

22

21

12

11

1221

1121

1211

1111



















=





































R

R

R

R

f

f

f

f

FG

FG

FG

FG

 (2-11)

The matrix on the left hand side is always singular, no matter what are the values G

and F. This can be shown via calculating the determinant of the left hand side matrix.

Therefore, a regularization procedure should be carried out to eliminate the
singularity from the equation system [2, 3]. Regularization terms are added to the Q
function to be minimized at each iteration step,

,)/(),(
1 1

2

1 1

2

1 1

2 ∑∑∑∑∑∑
= == == =

++=
p

h

n

j
hj

m

i

p

h
ih

m

i

n

j
ijijQ FGóRFG δγ (2-12)

where γ and δ are small quantities for enforcing regularization. Eq. (2-4) used to
compute the unknowns are expressed in normal equation format, and also revised for the
new target function,

() ,i
TT ËxWRAxËWAA −=∆+ (2-13)

where W matrix is a diagonal matrix of the weights ijijw 2/1 ó= , . For example, for 2 by
2 matrix case,

.

000

000

000

000

22

21

12

11



















=

w

w

w

w

W (2-14)

Ë is a diagonal matrix with γ or δ on the diagonal positions.

[] TGGGFFFx mppni 12111211= represents the solution of matrices G

and F at current iteration step. [] Tgggfffx mppn 12111211=∆ represents
the increment matrix for current step G and F matrices. After x∆ is solved, G and F
matrices can be formed via the increment relationship xxx ∆+=+ ii 1 .

The detailed development of Eq. (2-13) is shown explicitly in [3]. The development
proceeds in a way that each term of the target function Q is linearized around current
iteration step solution of G and F matrices, and then minimizing Q (through the method
of matrix differentiation) leads to the normal equation desired.

(3) Positive Constraints

Positive constraints can be enforced by adding penalty functions to the Q function[2,

3]. In our case, logarithmic terms are added. The revised target function Q is

,

loglog)/(),(

1 1

2

1 1

2

1 1 111 1

2

∑∑∑∑

∑ ∑∑∑∑∑

= == =

= = === =

++

−−=

p

h

n

j
hj

m

i

p

h
ih

m

i

p

h

n

j
hj

p

h
ih

m

i

n

j
ijijQ

FG

FGóRFG

δγ

βα

 (2-15)

where α and β are small quantities used to control the strength of the penalty terms. It
is also called logarithmic barrier method. It’s obvious from Eq. (2-15) that when the
elements of G or F get close to zero, large penalty of Q will come out. Therefore, this
method can keep the computed G and F from getting close to zero.

To use the logarithmic barrier method in our model, logarithmic terms in Q must be
approximated by quadratic functions [3], for example, for the logarithmic function

),(log)(10 yyf = (2-16)
the corresponding quadratic function is

,)()(2
21 cycyq −= (2-17)

where

)ln(2,
)ln()10ln(4

1
0002

0
2

0

1 yyyc
yy

c −== (2-18)

can be derived by letting the value of the 1st derivative of f(y) and q(y) be equal at current
solution point y0.

Eq. (2-13) can be modified to be consistent with the new target function Q,
()),(*

0 ip
T

p
T xxËËxWRAxËËWAA −+−=∆++ (2-19)

where pË is a diagonal matrix with α1c or β1c on the diagonal positions, here the

coefficient c1 is defined in Eq. (2-18). [] Tx pnmccc)(
2

2
2

1
2

* ... += is a vector with

))(1(2 pnmic i +≤≤ defined in Eq. (2-18), the superscript i represents that c2 is the
coefficient corresponding to the ith variable in x (x is a 1)(×+ pnm matrix).

[] Tgggfffx mppn 12111211=∆ represents the increment matrix for current
step G and F matrices. After x∆ is solved, G and F matrices can be formed via the
increment relationship xxx ∆+=+ ii 1 .

However, this approximation of logarithmic penalty functions as quadratic functions
cannot prevent occasionally computed negative values appear in the solution [3]. In such
cases, MATLAB lsqnonneg function is used to change the solution back to positive.
MATLAB command X = lsqnonneg(A, b) function return the vector X that minimizes
norm(A*X – b, 2), subject to 0≥X .

Thus, we have derived an equation system that can be used to compute the increment
vector x with the knowledge of current iteration solution x0.

(4) Implementation Pseudocode

a. Set the initial value of G and F matrices;
b. Form matrix A in Eq. (2-4);
c. Form matrix WAAB T= , where W is the weight matrix, it is current hard-wired

as identity matrix in our code because we are not concerned with the physical meaning of
the matrix A;

d. Form matrix GFXR −= ;
e. Form matrix WRAC T= ;
f. Form matrix Ë ;
g. Form matrix iËx− , where xi is a vector consists of the current iteration step G

and F matrices element values;
h. Form matrix pË ;
i. Approximate logarithmic barrier functions as quadratic functions using Eq. (2-

18);
j. Form vector)(*

ip xxË − ;
k. Form the equations system RHSxLHS =∆ of Eq. (2-19) by summating the

matrices computed above together;
l. Solve the equation in jth step to get unknowns x, i.e., g and f;
m. Form matrix F and G for next step, with fFF += and gGG += ;
n. If F or G are not positive (this situation occasionally happens because

approximation of logarithmic functions with quadratic functions cannot enforce non-
negative condition strictly), use MATLAB lsqnonneg function to adjust it back to
positive;

o. Evaluate error Q based on F and G matrices, if this value is smaller than our
prefixed error tolerance, then the algorithm converged and program stops. Otherwise,
goto step b to begin another iteration step.

(5) Computation Samples

Computation samples verify that our implementation is successful. For example, for a
matrix

,

121110

987

654

321



















=X

the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 *
ones(4, 2); F = 0.5 * ones(2, 3);) is given below:

Converge at 21 step, tolerance = 0.001000, v_Qbar = 0.000126
G =
 1.1943 0.1309
 1.3492 1.2415

 1.5042 2.3521
 1.6591 3.4627
F =
 0.5520 1.3983 2.2447
 2.6237 2.5063 2.3890
X-G*F=
 -0.0026 0.0019 0.0065
 -0.0020 0.0017 0.0054
 -0.0014 0.0015 0.0044
 -0.0008 0.0013 0.0033

3. A New PMF Algorithm with Rank-Deficient QR Decomposition

Notice that we do not have to add the regularization terms and logarithmic penalty
terms into the target function in Eq. (2-7), because:

• Rank-Deficient least squares problems can be solved via QR decomposition
with column pivoting [5];

• MATLAB lsqnonneg function can enforce the non-negativity of the matrices.
Therefore, in this section, we use MATLAB lsqnonneg function and rank-deficient QR
decomposition to solve positive matrix factorization problem.

(1) Solving rank-deficient least squares problems using QR with pivoting

The QR decomposition of a rank-deficient matrix A can be written as:

[] ,







==

00

RR
QQQRAP 21

21 (3-1)

where A is a m by n matrix with rank r, R1 is an invertible r by r matrix, R2 is a r by (n-r)
matrix, Q1 is a m by r matrix, Q2 is a m by (m-r) matrix, P is a permutation matrix
introduced by pivoting.

The least square problem
2

min bAx
x

− has a solution [5] of









=

−

0

bQR
Px 11)(1 T

 (3-2)

The detailed development of the above equation is in [5]. The permutation matrix P is

the only difference between Eq. (3-2) and the expression of x in [5].

(2) Solution Space Partition [2]

Realized that [] Tgggfffx mppn 12111211= in Eq. (2-4) might consist
of too many variables and cause the size of matrix A to be too large, in this algorithm, we
actually break the solution procedure into two steps.

Let [] T

1 fffx αpn...1211= , and solve the equations
RgFGf =+α (3-3)

where g and F are known matrices from the previous iteration step. We have only (np+1)
unknowns in this equation system, which will make the matrix size smaller.

Eq. (3-3) can be written as
)(RxM 11 vect= (3-4)

where M1 matrix consists of many zeros and the remaining part is determined by
elements of F, G, and g matrices, and vect(R) is a vector for the matrix R expressed in
vector form with row dominant order.

The next part is to let [] T
2 gggx αpn...1211= , and solve the equations

RgFGf =+α (3-5)
where G and f are known matrices from the previous iteration step. We have (mp+1)
unknowns in this equation system.

Eq. (3-5) can be written as
)(22 RxM vect= (3-6)

where M2 matrix consists of many zeros and the remaining part is determined by
elements of G, F, and f matrices, and vect(R) is a vector for the matrix R expressed in
vector form with row dominant order.

(3) Algorithm Implementation Pseudocode

a. Set initial value of G, F, f matrices;
b. Form matrix M1 in Eq. (3-4);
c. Form matrix R as R = X – GF;
d. Solve Eq. (3-4) using QR with pivoting as described above;
e. Form new matrices G = G + α g, F = F + f ;
f. Form matrix M2 in Eq. (3-6);
g. Form matrix R as R = X – GF;
h. Solve Eq. (3-6) using QR with pivoting as described above;
i. Form new matrices G = G + g, F = F +α f ;
p. If F or G are not positive (because we did not enforce non-negativity using

penalty function), use MATLAB lsqnonneg function to adjust it back to positive;
j. Evaluate error Q based on F and G matrices, if this value is smaller than our

prefixed error tolerance, then the algorithm has converged and program stops.
Otherwise, goto step b to begin another iteration step.

 (4) Computation Samples

Computation samples verify that our implementation is successful. For example, for a
matrix

,

121110

987

654

321



















=X

the output of our program when running at a tolerance of 1.0e-3 (Initial value G = 0.5 *
ones(4, 2); F = 0.5 * ones(2, 3);) is given below:

Converge at 4 step, tolerance = 0.001000, v_Qbar = 0.000856
G =
 2.3098 0.6767
 9.0492 0.5085
 15.7886 0.3404

 22.5280 0.1722
F =
 0.4435 0.4782 0.5121
 0 1.3233 2.6850
X-G*F=
 -0.0244 -0.0000 -0.0000
 -0.0132 -0.0000 -0.0000
 -0.0020 0 -0.0000
 0.0092 0 -0.0000

4. Computation, Comparison and Conclusion

We described the details of the four algorithms above and implemented them in
MATLAB. These four algorithms are: Euclidean Update, Divergence Update, PMF, and
PMF_DefQR.

Here are some aspects tested for persuasive results:

(1) Convergent Speed

All these algorithms start with some initial matrices G and F, and keep updating them
until convergence. Here convergence means that the cost functions (or the evaluation
functions) are satisfied. It’s obvious that the number of iterations is a very important
value that can indicate the speed of an algorithm.

(2) Initial Value Selection

All these algorithms have the same problem: local minima problem. With some initial
values, G and F may reach some local minima, which cannot satisfy the cost functions
(or the evaluation functions). So the algorithm cannot converge with these initial values.

Although all these algorithms have this problem, some algorithms are more sensitive
to initial values, which means with some random initial values, the possibility that they
cannot converge is large. While other algorithms are much better since for most of initial
values, these algorithms can converge.

If an algorithm is not sensitive to the initial values, this means that this algorithm is
easy to use in a wide area. So this is also a very important criterion we need to consider.

(3) Result Quality

The result quality is absolutely what we concern. Here result quality refers to the
closeness of X and GF. Since different algorithms use different cost functions (or
evaluation functions), it’s difficult to compare the result quality directly based on these
functions. As an alternative we use the 2-norm of the residual matrix (norm(X – GF, 2))
to evaluate the result quality of all these algorithms.

(4) Easiness of Implementation

It is obvious from our implementation efforts that NMF algorithms [1] (Euclidean
Update and Divergence Update) are the easiest to implement. PMF algorithm [2] is the
most difficult to implement, actually, most of our time is spent in this part because of
many hidden materials in the paper and the complexity of the algorithm. Our new
PMF_DefQR algorithm is relatively easier to implement compared with PMF algorithm
[2], and with better convergent speed.

The data in the table is the statistical information in the following conditions: each
algorithm is run on a matrix X for 100 times. Each time we use two random matrices G
and F as the initial matrices. Then we record the convergent rate, average convergence
steps and average norm of the residual matrix X – GF.

 Euclidean Divergence PMF PMF_DefQR
Convergent rate 58% 93% 100% 94%
Average convergence steps 223.7241 211.6774 18.8400 3.8723
Average norm of X - GF 0.0308 0.0598 0.0205 0.0095

One thing that we need to mention here before we further discuss the advantages and
disadvantages of all four algorithms is the convergent speed. From the above table we
can see that generally Euclidean Update and Divergence Update use hundreds of steps
while PMF and PMF_DefQR algorithms only use several steps. But the difference of
running time between them is not so large as suggested by the convergent steps. That’s
because in the Euclidean and Divergence algorithm, every step is just a multiplicative
update and consumes less time than PMF and PMF_DefQR algorithms, which need to
solve linear equations or do QR decomposition.

Advantages and Disadvantages of Euclidean Update

Euclidean Update algorithm converges very slowly. From the above table we can
clearly see that in our test case, it averagely takes more than 200 steps if it can converge.

Euclidean Update algorithm also has the disadvantage that local minima may occur,
in which we cannot get a global optimal solution. The convergent rate of this algorithm is
quite low in our test, only 58%, which means in many cases, it converges to local minima
instead of the result that satisfies our requirement. So if we want to use this algorithm, we
need to be very careful to select the initial value in order to get a successful non-negative
factorization.

But if it can converge, the result quality is not bad comparing with other algorithms.
Also the algorithm is very easy to implement.

Advantages and Disadvantages of Divergence Update

Divergence Update algorithm converges very slowly. From the above table we can
see that in our test case, it averagely takes more then 200 steps if it can converge.

Divergence Update algorithm also has the disadvantage that local minima may occur,
in which we cannot get a global optimal solution. But from our test we can see that the
convergent rate (93%) is much better than the Euclidean Update algorithm. This means
that this algorithm is easier to use than the Euclidean algorithm.

And this algorithm is also very easy to implement comparing with PMF and
PMF_DefQR algorithm.

But from the above table we can see that the result quality of this algorithm is not as

good as other algorithms. In order to get better results, we need to make the cost function
stricter, which generally means to reduce the convergent rate or increase the convergence
steps.

Advantages and Disadvantages of PMF algorithm

PMF algorithm [2, 3] usually can converge faster compared with NMF algorithms [1].
Also, PMF algorithm has an excellent merit in that it can deal with the weighted positive
matrix factorization problem, which is very important in environmental science,
spectroscopy and chemometrics [2, 3, 6, 7] where the matrix elements have clear physical
meanings.

Just like NMF algorithms, PMF algorithm also has the disadvantage that local
minima may occur, in which we cannot get a global optimal solution. But from the above
table we can see that all the cases we test converge, which means that generally in PMF
algorithm, the selection of initial value is not that strict comparing with NMF algorithms.
This is a great advantage of this algorithm.

Also from the above table we can see that the result quality (which is indicated by the
average norm) of the PMF is a little bit better than the NMF algorithms.

But PMF algorithm needs much more time to implement comparing with NMF
algorithms, which is a disadvantage.

Advantages and Disadvantages of PMF algorithm

It is awesome that our new PMF_DefQR algorithm converges so fast, even compared
with the PMF algorithm. Also we can see that the result quality of our algorithm is very
good, also better than the PMF algorithm.

Our new algorithm has another merit that it can be implemented very easily compared
with Paatero’s PMF algorithm.

However, just like other algorithms, this new algorithm also has the disadvantage that
local minima may occur, in which we cannot get a global optimal solution. But from the
above table we can see that the convergent rate of our algorithm is 94%, only slightly less
than the PMF algorithm.

5. Future Work

One of the most important problems in the use of PMF algorithms to solve practical
problems is rotation. As illustrated earlier in this paper, the existence of rotation results in
non-unique solution to the PMF problem. Through the use of regularization terms in the

target function Q, singularity of the equation system can be removed. Most of the positive
matrix factorizations have rotational domains (“rotational domain” means the set of all
possible rotations) [4]. However, our PMF algorithm actually attempts to compute a
solution in the middle of the rotational domain [4]. Computing the rotational domain of a
positive matrix factorization is an interesting research area.

It is well known that Singluar Value Decompostion (SVD) method can provide a
better and more accurate way to solve rank-deficient least squares problems compared
with QR with pivoting method. Therefore, it might be a good choice to use SVD instead
of QR with pivoting in the future version of this new PMF algorithm.

References
[1] D. D. Lee, H. S. Seung. Algorithms for non-negative matrix factorization.
[2] P. Paatero, U. Tapper. Least squares formulation of robust non-negative factor
analysis. Chemometr. Intell. Lab. 37 (1997), 23-35.
[3] P. Paatero. A weighted non-negative least squares algorithm for three-way
‘PARAFAC’ factor analysis. Chemometr. Intell. Lab. 38 (1997), 223-242.
[4] P. Paatero, P. K. Hopke, etc. Understanding and controlling rotations in factor
analytic models. Chemometr. Intell. Lab. 60 (2002), 253-264.
[5] J. W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics, Philadelphia. 1997.
[6] S. Juntto, P. Paatero. Analysis of daily precipitation data by positive matrix
factorization. Environmetrics, 5 (1994), 127-144.
[7] P. Paatero, U. Tapper. Positive matrix factorization: a non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5 (1994), 111-126.
[8] C. L. Lawson, R. J. Hanson. Solving least squares problems. Prentice-Hall,
Englewood Cliffs, NJ, 1974.

